Product Description

YE2 Series Three phase AC Motor
1) YE2 series motors are totally enclosed fan cooling 3 phase squirrel cage induction motor.

2) YE2 series motors have outstanding performance, such as high efficiency, energy saving, high starting torque, low noise, little
vibration, reliable operation and easy maintenance, etc.

3) It is widely used in many places where do not have combustible, explosive or corrosive gas, and without special requirements,
such as driving equipments of various machineries such as: machine tools, blowers, pumps, air compressors, transporters,
agricultural and food processing.

4) The Y connection for moor of 3kw and below; and CHINAMFG connection for 4kw and above.


CHINAMFG is proud to be celebrating our 15th anniversary this year. Over this time the company has grown from a small family run business to a large international company with hundreds of millions of dollars in annual revenue.CHINAMFG Motor Co., Ltd. is a professional manufacturer and seller of various of electric motors, which previous company HangZhou CHINAMFG Electric Co., Ltd, was found in 1999. And upgraded to China CHINAMFG Motor Co., Ltd. in 2571, with registered capital of 50 million RMB. In 2013, a new plant was completed and the production started in the meantime. The new plant covers an area of 35000 square meters, located in Xihu (West Lake) Dis. industrial area. Owns more than 200 sets advanced processing and testing equipment, and 500 staffs, including nearly 100 engineer and technician, 20% of them are senior titled.

CHINAMFG received great harvest from domestic and overseas market. We have developed several CHINAMFG brands, such as China Weiye, ZHangZhoug Wanshida, ZheZheJiang CHINAMFG and HangZhou Xima. We produce various three-phase asynchronous motors Y, Y2, YX3, YEJ2, YVF2, YD2, YCT, ML, MY, YS, YC, YY, MS aluminum motors, YL series single-phase motors, YD series multi-speed motors, variable speed motors, YB2, YB3 series explosion-proof motors, High efficiency motors, etc.

CHINAMFG has over 500 distributors in China, and export to East Asia, Japan, Middle East, Europe and Africa, the high quality products bring us good credit and high reputation. As CHINAMFG always produce according to ISO-9001 strictly, and offer customers high quality products. Now the update plant and capacity allow us to have better control in incoming inspection, producing process, transportation, sales and after-sales services. CHINAMFG is committed to innovation and is constantly working to provide the next breakthrough in electric motors. We are willing to cooperate with you to create the flourishing future.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Low Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Closed Type
Number of Poles: 4
US$ 65/Piece
1 Piece(Min.Order)




induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Can AC motors be used in renewable energy systems, such as wind turbines?

Yes, AC motors can be used in renewable energy systems, including wind turbines. In fact, AC motors are commonly employed in various applications within wind turbines due to their numerous advantages. Here’s a detailed explanation:

1. Generator: In a wind turbine system, the AC motor often functions as a generator. As the wind turbine blades rotate, they drive the rotor of the generator, which converts the mechanical energy of the wind into electrical energy. AC generators are commonly used in wind turbines due to their efficiency, reliability, and compatibility with power grid systems.

2. Variable Speed Control: AC motors offer the advantage of variable speed control, which is crucial for wind turbines. The wind speed is variable, and in order to maximize energy capture, the rotor speed needs to be adjusted accordingly. AC motors, when used as generators, can adjust their rotational speed with the changing wind conditions by modifying the frequency and voltage of the output electrical signal.

3. Efficiency: AC motors are known for their high efficiency, which is an important factor in renewable energy systems. Wind turbines aim to convert as much of the wind energy into electrical energy as possible. AC motors, especially those designed for high efficiency, can help maximize the overall energy conversion efficiency of the wind turbine system.

4. Grid Integration: AC motors are well-suited for grid integration in renewable energy systems. The electrical output from the AC generator can be easily synchronized with the grid frequency and voltage, allowing for seamless integration of the wind turbine system with the existing power grid infrastructure. This facilitates the efficient distribution of the generated electricity to consumers.

5. Control and Monitoring: AC motors offer advanced control and monitoring capabilities, which are essential for wind turbine systems. The electrical parameters, such as voltage, frequency, and power output, can be easily monitored and controlled in AC motor-based generators. This allows for real-time monitoring of the wind turbine performance, fault detection, and optimization of the power generation process.

6. Availability and Standardization: AC motors are widely available in various sizes and power ratings, making them readily accessible for wind turbine applications. They are also well-standardized, ensuring compatibility with other system components and facilitating maintenance, repair, and replacement activities.

It’s worth noting that while AC motors are commonly used in wind turbines, there are other types of generators and motor technologies utilized in specific wind turbine designs, such as permanent magnet synchronous generators (PMSGs) or doubly-fed induction generators (DFIGs). These alternatives offer their own advantages and may be preferred in certain wind turbine configurations.

In summary, AC motors can indeed be used in renewable energy systems, including wind turbines. Their efficiency, variable speed control, grid integration capabilities, and advanced control features make them a suitable choice for converting wind energy into electrical energy in a reliable and efficient manner.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China best 3 Phase 380V 750W 1.1kw 1.5kw 1.8kw 2.2kw 3kw 4kw AC Motor   vacuum pump for ac	China best 3 Phase 380V 750W 1.1kw 1.5kw 1.8kw 2.2kw 3kw 4kw AC Motor   vacuum pump for ac
editor by CX 2024-04-03