Product Description

Company  Profiles
      
ZHangZhoug Xihu (West Lake) Dis.hai Reducer is a leading manufacturer of gear motor and gearbox.
Since 1991, we have specialized in manufacturing a wide range of gear motor and gear box including:
 

  • helical gear motor
  • helical bevel gear motor
  • parallel shaft helical gear motor
  • helical worm gear motor
  • hoist drive
  • heavy-duty helical gearbox
  • heavy-duty helical bevel gearbox
  • gear motor for car parking system
  • sprial bevel gearbox

Product Description

Product Description
 

E series gear motor is combined with helical gear and worm gear. It is 90° for input and output shaft.

Mounting position: footed mounting, flange mounting and shaft mounting etc.

Technical data:

Output speed:0.12~397rpm

Rated output torque:10~4200N*m

Motor power: 0.12~22KW

Detailed Photos

Product Parameters

Product features
1. Economical operation, low noise and high permitted overhung loads.
2. Due to their outstanding efficiency, these drives can be used in every industrial sector and tailored to individual torque and speed requirements.
General Technical data
Housing material HT250 high-strength cast iron
Housing hardness HBS190-240
Pinion material  20CrMnTiH
Gear material 20CrMnTiH
Surface hardness of gears HRC58°~62 °
Gear core hardness HRC33~40
Input /output shaft material 40CrMnTiH
Input / Output shaft hardness HRC25~30
Machining precision of gears accurate grinding, 6~7 Grade
Lubricating oil GB L-CKC220
Heat treatment tempering, cementiting, quenching, etc.
Efficiency 94%~96% (depends on the transmission stage) 
Noise (MAX) 60~68dB
Temp. rise  (MAX) 40°C 
Temp. rise (Oil)(MAX) 50°C
Vibration ≤20µm
Backlash ≤20Arcmin
Brand of bearings China Top brand C&U,LYC,TMB or other brands requested, 
Brand of oil seal CTY— ZheJiang or other brands requested
E —- series helical-worm gear motor
E-series single stages
Model Output Shaft Dia. Center Height Output Flange Dia. Power Ratio Permitted Torque Output Speed 
Solid (mm)  (mm) (mm) (kw) (Nm) (RPM)
E37 20k6 80j6 80/120 0.12~1.5 6.72~160 105 8.4~397
E47 25k6 100j6 110/160 0.12~1.5 7.5~212 190 6.6~192
E57 30k6 112j6 130/200 0.18~3.0 7.5~212 340 6.5~194
E67 35k6 140j6 130/200 0.25~5.5 7.45~215 565 6~189
E77 45k6 180j6 180/250 0.37~7.5 7.9~257 1200 3.5~177
E87 60m6 225h6 250/350 0.55~15 8.52~277 2600 1.0~171
E97 70m6 280h6 350/450 1.5~22 8.26~282 4185 4.9~177
E- series double stages 
Model Output Shaft Dia. Center Height Output Flange Dia. Power Ratio Permitted Torque Output Speed 
Solid (mm)  (mm) (mm) (kw) (Nm) (RPM)
E37D17 20k6 80j13 80/120 0.12 110~202 89 6.8~13
E47D17 25k6 100j13 110/160 0.12~0.18 180~438 255 3.2~7.4
E57D17 30k6 112j13 130/200 0.12~0.25 131~655 311 2.1~9.9
E67D37 35k6 140j13 130/200 0.12~0.37 246~1363 600 1.0~5.6
E77D37 45k6 180j13 180/250 0.12~1.1 219~3540 1230 0.39~6.4
E87D57 60m6 225h13 250/350 0.12~1.5 205~7643 2810 0.18~6.9
E97D57 70m6 280h13 350/450 0.12~3.0 179~11267 4420 0.12~7.7

 

Company Profile

ZHangZhoug Xihu (West Lake) Dis.hai Reducer Co., LTD is professionally manufacturing gear motor and gear box, with more than 20+years  experience,
And an industrial and trading company have been set up in ZheJiang , known as “ZheJiang Teguosi Transmission Equipment Co., Ltd”, and shorten as ” DHC•TGS”, mainly researching and developing high-quality transmission equipment, providing complete sets of equipment for the global intelligent industry in accordance with European standards, National standards and Enterprise standards. 

Our products had been Certified by CE,CCC,CQC,XT. 
As a leading brand of domestic transmission equipment, it is also a National High-tech Enterprise, a director of the China Heavy Machinery Industry Association, and a Parking Equipment Working Committee and a Bridge Crane Professional Committee. 

Your reliable supplier ,we assure you the utmost reliability and security for both product and services

Our Advantages

Our Advantages: Your professional supplier with 20+years experience

Widely  Used In  Different Industries

Package

Plastic bag + wooden carton

FAQ

 

FAQ

1.Q:What kinds of gearbox can you produce for us?
A:Main products of our company:  E, D, T, and P series helical gear motor and
hoist   drive
heavy-duty helical gearbox
heavy-duty helical bevel gearbox
gear motor for car parking system
sprial bevel gearbox  
more  than 1 hundred models and thousands of specifications
2.Q: How long is your delivery time?
A:
Generally it is 5-10 days if the parts are in stock. or it is 15-40 days if the parts are not in stock.
3.Q: What is your MOQ?
A:1 Set
4.Q: :Can you make as per custom drawing?
 A:Yes, we offer customized service for customers.

If you have any demand for our products please feel free to contact me. 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Transmission Equipment
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Shunting
Gear Shape: Bevel
Step: Three-Step

induction motor

Are there specific maintenance requirements for AC motors to ensure optimal performance?

Yes, AC motors have specific maintenance requirements to ensure their optimal performance and longevity. Regular maintenance helps prevent unexpected failures, maximizes efficiency, and extends the lifespan of the motor. Here are some key maintenance practices for AC motors:

  1. Cleaning and Inspection: Regularly clean the motor to remove dust, dirt, and debris that can accumulate on the motor surfaces and hinder heat dissipation. Inspect the motor for any signs of damage, loose connections, or abnormal noise/vibration. Address any issues promptly to prevent further damage.
  2. Lubrication: Check the motor’s lubrication requirements and ensure proper lubrication of bearings, gears, and other moving parts. Insufficient or excessive lubrication can lead to increased friction, overheating, and premature wear. Follow the manufacturer’s guidelines for lubrication intervals and use the recommended lubricants.
  3. Belt and Pulley Maintenance: If the motor is coupled with a belt and pulley system, regularly inspect and adjust the tension of the belts. Improper belt tension can affect motor performance and efficiency. Replace worn-out belts and damaged pulleys as needed.
  4. Cooling System Maintenance: AC motors often have cooling systems such as fans or heat sinks to dissipate heat generated during operation. Ensure that these cooling systems are clean and functioning properly. Remove any obstructions that may impede airflow and compromise cooling efficiency.
  5. Electrical Connections: Regularly inspect the motor’s electrical connections for signs of loose or corroded terminals. Loose connections can lead to voltage drops, increased resistance, and overheating. Tighten or replace any damaged connections and ensure proper grounding.
  6. Vibration Analysis: Periodically perform vibration analysis on the motor to detect any abnormal vibrations. Excessive vibration can indicate misalignment, unbalanced rotors, or worn-out bearings. Address the underlying causes of vibration to prevent further damage and ensure smooth operation.
  7. Motor Testing: Conduct regular motor testing, such as insulation resistance testing and winding resistance measurement, to assess the motor’s electrical condition. These tests can identify insulation breakdown, winding faults, or other electrical issues that may affect motor performance and reliability.
  8. Professional Maintenance: For more complex maintenance tasks or when dealing with large industrial motors, it is advisable to involve professional technicians or motor specialists. They have the expertise and tools to perform in-depth inspections, repairs, and preventive maintenance procedures.

It’s important to note that specific maintenance requirements may vary depending on the motor type, size, and application. Always refer to the manufacturer’s guidelines and recommendations for the particular AC motor in use. By following proper maintenance practices, AC motors can operate optimally, minimize downtime, and have an extended service life.

induction motor

Are there energy-saving technologies or features available in modern AC motors?

Yes, modern AC motors often incorporate various energy-saving technologies and features designed to improve their efficiency and reduce power consumption. These advancements aim to minimize energy losses and optimize motor performance. Here are some energy-saving technologies and features commonly found in modern AC motors:

  • High-Efficiency Designs: Modern AC motors are often designed with higher efficiency standards compared to older models. These motors are built using advanced materials and optimized designs to reduce energy losses, such as resistive losses in motor windings and mechanical losses due to friction and drag. High-efficiency motors can achieve energy savings by converting a higher percentage of electrical input power into useful mechanical work.
  • Premium Efficiency Standards: International standards and regulations, such as the NEMA Premium® and IE (International Efficiency) classifications, define minimum energy efficiency requirements for AC motors. Premium efficiency motors meet or exceed these standards, offering improved efficiency compared to standard motors. These motors often incorporate design enhancements, such as improved core materials, reduced winding resistance, and optimized ventilation systems, to achieve higher efficiency levels.
  • Variable Frequency Drives (VFDs): VFDs, also known as adjustable speed drives or inverters, are control devices that allow AC motors to operate at variable speeds by adjusting the frequency and voltage of the electrical power supplied to the motor. By matching the motor speed to the load requirements, VFDs can significantly reduce energy consumption. VFDs are particularly effective in applications where the motor operates at a partial load for extended periods, such as HVAC systems, pumps, and fans.
  • Efficient Motor Control Algorithms: Modern motor control algorithms, implemented in motor drives or control systems, optimize motor operation for improved energy efficiency. These algorithms dynamically adjust motor parameters, such as voltage, frequency, and current, based on load conditions, thereby minimizing energy wastage. Advanced control techniques, such as sensorless vector control or field-oriented control, enhance motor performance and efficiency by precisely regulating the motor’s magnetic field.
  • Improved Cooling and Ventilation: Effective cooling and ventilation are crucial for maintaining motor efficiency. Modern AC motors often feature enhanced cooling systems, including improved fan designs, better airflow management, and optimized ventilation paths. Efficient cooling helps prevent motor overheating and reduces losses due to heat dissipation. Some motors also incorporate thermal monitoring and protection mechanisms to avoid excessive temperatures and ensure optimal operating conditions.
  • Bearings and Friction Reduction: Friction losses in bearings and mechanical components can consume significant amounts of energy in AC motors. Modern motors employ advanced bearing technologies, such as sealed or lubrication-free bearings, to reduce friction and minimize energy losses. Additionally, optimized rotor and stator designs, along with improved manufacturing techniques, help reduce mechanical losses and enhance motor efficiency.
  • Power Factor Correction: Power factor is a measure of how effectively electrical power is being utilized. AC motors with poor power factor can contribute to increased reactive power consumption and lower overall power system efficiency. Power factor correction techniques, such as capacitor banks or power factor correction controllers, are often employed to improve power factor and minimize reactive power losses, resulting in more efficient motor operation.

By incorporating these energy-saving technologies and features, modern AC motors can achieve significant improvements in energy efficiency, leading to reduced power consumption and lower operating costs. When considering the use of AC motors, it is advisable to select models that meet or exceed recognized efficiency standards and consult manufacturers or experts to ensure the motor’s compatibility with specific applications and energy-saving requirements.

induction motor

Can you explain the basic working principle of an AC motor?

An AC motor operates based on the principles of electromagnetic induction. It converts electrical energy into mechanical energy through the interaction of magnetic fields. The basic working principle of an AC motor involves the following steps:

  1. The AC motor consists of two main components: the stator and the rotor. The stator is the stationary part of the motor and contains the stator windings. The rotor is the rotating part of the motor and is connected to a shaft.
  2. When an alternating current (AC) is supplied to the stator windings, it creates a changing magnetic field.
  3. The changing magnetic field induces a voltage in the rotor windings, which are either short-circuited conductive bars or coils.
  4. The induced voltage in the rotor windings creates a magnetic field in the rotor.
  5. The magnetic field of the rotor interacts with the rotating magnetic field of the stator, resulting in a torque force.
  6. The torque force causes the rotor to rotate, transferring mechanical energy to the connected shaft.
  7. The rotation of the rotor continues as long as the AC power supply is provided to the stator windings.

This basic working principle is applicable to various types of AC motors, including induction motors and synchronous motors. However, the specific construction and design of the motor may vary depending on the type and intended application.

China wholesaler AC Gear Motor with Worm and Helical Gears   vacuum pump	China wholesaler AC Gear Motor with Worm and Helical Gears   vacuum pump
editor by CX 2024-04-16